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Abstract
The full geometrical symmetry groups of zinc oxide nanowires, nanotubes,
nanosprings and nanorings are found and some physical properties which can
be deduced from the symmetry are discussed: conserved quantum numbers
and band degeneracies; dynamical representations, Raman and infrared active
modes; piezoelectric tensor.

1. Introduction

Since the discovery of the functional semiconducting oxide nanostructures [1] diverse
nanosized forms of zinc oxide have been synthesized (for a review see, e.g., [2]). In
addition to the unique combination of semiconducting and piezoelectric properties of the
bulk, a nanostructured ZnO single crystal exhibits quite novel electro-optical and mechanical
properties. Being also bio-safe and bio-compatible it shows good potential to take the role of a
key nanotechnological material in future research and applications.

Although there is a vast number of papers on growth techniques of ZnO nanostructures [2],
and reports on experimental research of their Raman spectra [3] and optical properties [4, 5],
photoluminescence [6] in particular, there is an apparent lack of theoretical investigations of
these structures. In this paper we analyse the structure and symmetry of ZnO nanowires
(nanorods), nanotubes, seamless nanorings, nanosprings (nanohelices) and superlattice
structured nanohelices [7] and discuss their symmetry based properties. The results presented
can be helpful in experimental data analysis and in further quantitative estimations of the
physical properties of these technologically interesting materials. Namely, symmetry based
considerations proved to be extremely fruitful in a context of the carbon nanotubes [8, 9] and
without doubt will be an indispensable tool in studying the diversity of ZnO nanostructures.

In section 2 we study a variety of the nanostructures and describe their symmetry in terms
of the line groups [9–11, 19]. For each of these structures we give the orbit types and the site
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symmetry groups (stabilizers), i.e. we specify the asymmetric cell (also called the full symmetry
cell or symcell). For the translationally periodic structures with crystallographic principal axes,
the corresponding line groups are in the physics of semiconductors known as the rod groups,
and we give the rod-group notation [12] as well. Section 3 is devoted to direct consequences
of the found symmetry. Some of them are quite general (e.g. conserved quantum numbers and
band degeneracy). On the other hand, classification of Raman active modes is motivated by
the great importance of Raman spectroscopy in characterizing carbon and inorganic nanotubes,
while the piezoelectricity is singled out as one of the most significant ZnO characteristics.

2. Symmetry

Zinc oxide, the mineral zincite, crystallizes in the wurtzite structure whose underlying Bravais
lattice is hexagonal (space group P63mc = C4

6v). The lattice parameters are b = b1 = b2 =
3.25 Å (in the xy-plane), b3 = 5.21 Å (along the z-axis) and the structure is characterized by
tetrahedral coordination of the ion of one kind (e.g. Zn2+) by the ions of the other kind (O2−).
Therefore, as the isogonal point group of the zincite does not contain an inversion, the crystal
is a piezoelectric.

2.1. Nanowires and nanotubes

Over past few years a variety of techniques (e.g. the catalysed vapour–liquid–solid process [13],
vapour phase growth on large area substrates [14], metal-catalyst-free [15] and plasma-assisted
molecular beam epitaxy [16]) have been used to synthesize ZnO nanowires and nanotubes.
Quite recently, controlled synthesis of these nanostructures has been reported [17]. The as-
produced nanowires and nanotubes have been characterized and analysed by means of scanning
electron microscopy, x-ray diffraction, transmission electron microscopy, selected area electron
diffraction, and energy dispersive spectrometry. They are shown to retain the hexagonal
symmetry of the bulk. Some of the growth techniques [18] lead to the formation of single-
crystal ZnO nanotubes. Typically, the length of the nanowires and nanotubes ranges from
100 µm to 1 mm while the diameter varies from 50 to 500 nm.

ZnO nanowires can be imagined as hexagonal rods sawn from the bulk along planes
parallel to the symmetry axes, retaining thus the z-periodicity of the bulk. However, the wurtzite
structure has two types of the rotational axes along the z-direction: a third-order rotational axis
C3 which runs through the atoms, and a sixth-order screw axis, generated by (C6|b3/2), which
goes through the centres of hexagons formed by the atoms. Therefore, in principle, two types
of nanowires (and nanotubes) can be obtained.

The structures of the first type (3xH and 3yH structures) are obtained in the following
way. By sawing regular hexagons around the pure rotational axis (at the distance n2b

√
3/2)

along the planes perpendicular to ex = b1 + 2b2 and with the vectors successively rotated by
π/3, the 3xH structure is obtained. If the hollow is made by cutting out a coaxial rod at the
distance n1b

√
3/2 (0 � n1 < n2) (figure 1) a nanotube, parameterized as (n1, n2), is obtained.

Hence, the wall thickness is given by (n2 −n1)b
√

3/2 and the nanowire can be seen as a (0, n2)
‘nanotube’.

When cutting the bulk along the planes perpendicular to ey = b1 (and rotated directions)
one gets nanowires and nanotubes of the type 3yH, figure 1. The wall thickness of a nanotube
is given by (n2 − n1)b/2, while n2b is the diameter of a nanowire (or the outer diameter of a
nanotube).
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Figure 1. Nanotubes of the 3H type. Left panels: top view of the bulk. Points denote zinc atoms at
z = 0 (the black ones) and at z = b3/2 (the grey ones). Lines depict positions of the vertical mirror
planes. The third-order rotational axis is in their intersection. The symmetry cell is shaded. Right
panels: 3xH (3, 5) and 3yH(3, 6) nanotubes.

The symmetry group of both structures is the line group [19]:

L3H = T (b3)C3v, (1)

where T (b3) is the translational group with period b3 and C3v is the point group generated
by rotations of 2π/3 and reflections in the vertical mirror plane. As this is a translationally
periodic structure, with crystallographic principal axes, L3H is the rod group [12] No 49,
with the international symbol p3m1. Hence, the symmetry does not depend on the (n1, n2)
parameters, unlike the case of carbon nanotubes [9].

The type I nanotubes consist of two different orbital types [19, 11] (the set of atoms
generated from one of them by the group transformations): a1 type (having trivial stabilizer)
and b1 type (being invariant under vertical mirror reflections), while the nanowires have an
additional orbit of the d1 type whose stabilizer is the isogonal point group C3v, as the atoms
sit in the nanowire axis retaining the site symmetry of the bulk. The structures 3xH and 3yH,
however, differ in the number of orbits they are built of (see table 1).

Analogously, by sawing around the screw axis one gets the hexagonal structures 6xH and
6yH, figure 2. However, in the 6xH case the sawing planes are closely stacked. Their distance
is b

√
3/6. (Note that the first plane and those at the distance nb

√
3/2 do not contain atoms and

should not be considered, therefore.)
Thus, the 6H structures are characterized by (n1, n2), with integers n1 and n2 (being not

divisible by three in the 6H structures) and 1 < n1 < n2. The symmetry of both the structures
is described by the rod group No 70 (p63mc) [12], being the non-symmorphic line group [19]
(independently of n1 and n2):

L6H = T 1
6 (b3)C3v, (2)
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Figure 2. Nanotubes of the 6H type. Left panels: top view of the bulk. The walls are enumerated.
Points denote zinc atoms at z = 0 (the black ones) and at z = b3/2 (the grey ones). Mirror and
glide planes are indicated by thick and thin lines, respectively. The sixth-order screw axis is in their
intersection. The symmetry cell is shaded. Right panels: 6xH (6, 12) and 6yH(3, 6) nanotubes.

Table 1. Nanowire and nanotube orbit decomposition. For the nanostructure (NS) specified in
the first column, the line group family (LGF), the orbit types (according to [19], column OT, and
the corresponding Wyckoff letter, column W), the corresponding site symmetries (SITE) in two
notations, and the total numbers N − n of the orbits of Zn (or O) atoms within the nth wall are
given in the second, third, fourth and fifth column, respectively. In the last column a function
fn = ∑n

m=1 Nn , which determines the total number N of the orbits within the structure H(n1, n2)

(by the formula N = fn2 − fn1 ), is given. It is assumed that n, n1, n2 = 1, 2, . . ., and 3H(0, n2)

is considered to be composed of (1, n2) and d1 orbits of the wall n = 0. The Kronecker delta is
denoted as δp,q , while δ

p
q is equal to one if q divides p, and vanishes otherwise.

NS LGF OT W SITE Nn fn(n1, n2)

3xH 6 a1 c C1 1 2n − 1 − δ2
n n2 − [ n

2 ]
b1 b C1v ..m 1 + 2δ2

n n + 2[ n
2 ]

d1 a C3v 3.m δn,0 δn1,0

3yH 6 a1 c C1 1 n − 1 − [ n
3 ] n(n−1)

2 − [ n
3 ](n − 3

2 [ n
3 ] − 1

2 )

b1 b C1v ..m 1 + δ3
n n + [ n

3 ]
d1 a C3v 3.m δn,0 δn1,0

6xH 8 a1 c C1 1 (1 − δ3
n)[ n+1

6 ] [ n+1
6 ](n − 1 − [ n

3 ] − 2[ n+1
6 ])

b1 b C1v ..m (1 − δ3
n)δ2

n [ n
2 ] − [ n

6 ]
6yH 8 a1 c C1 1 [ n

3 ] [ n
3 ](n − 3

2 [ n
3 ] − 1

2 )

b1 b C1v ..m (1 − δ3
n) n − [ n

3 ]

where T 1
6 (b3) denotes a generalized translational group generated by rotations for π/3 which

are followed by translations of b3/2 (along the rotational axis).
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Figure 3. Nanospring zS(1,1)(4, 4) with radius 20 Å and helix step 30 Å.

Table 2. Nanoring orbit decompositions. For the nanoring structure specified in the first column,
the line group family, orbit types (according to the notation of [19]) and the corresponding site
symmetries are given in the second, third and fourth column, respectively. The total numbers of the
orbits of Zn (or O) atoms within the nth wall, Nn , and in the whole nanostructure, N , are specified
in the last two columns.

Nanoring a1, c LG fam. Orb. type Site symm. Nn N

zCa1 cL a1=(1,1)
c=(2k+1,0)

6 b1 C1v 2 2L
a1=(1,1)
c=(2k,0)

6 b1 C1v 1 L

c1 C1v 1 L
a1=(1,1)
c=(0,n)

3 a2 C1h 1 L

b1 C1h 1 L
a1=(2,1)
c=(n,0)

7 a1 C1 1 L
a1=(2,1)
c=(0,n)

2 a1 C1 1 L

Other 1 a1 C1 2 2L

xCa1 cL a1=(1,0)
c=(n,0)

8 b1 C1v 1 L
a1=(1,0)
c=(0,n)

4 b1 C1h 1 L

Other 1 a1 C1 2 2L

The isogonal point group is C6v and it is not a subgroup of L6H.
Unlike the type 3H, both the nanotubes and nanowires of the type 6H consist of the same

orbit types: a1 and b1, with stabilizers C1 and C1v, respectively. Hence, the site symmetry of
the bulk is broken here. As for the number of orbits, the structures 6xH and 6yH differ (table 1).

Growth of ZnO nanotubes with wall thickness ∼20 nm and nanowires with diameters
in the range 50–120 nm [18] and 80–150 nm [13] have been reported. Quite recently, ZnO
nanotubes with an outer diameter of about 50 nm and wall thickness of 8 nm have been
grown [17]. The latter would correspond to 3xH(150,178), 3yH(259,308), 6xH(448,533) or
6yH(259,308) structures. High-resolution Raman measurements with precise determination of
the polarizations of the incoming and outgoing light beams are expected to distinguish between
3H and 6H structures (table 3).

2.2. Nanosprings and superlattice structured nanohelices

In contrast to the nanowires, nanotubes and nanobelts (nanoribbons) which grow along the b3

axis and thus have reduced piezoelectricity, the polar nanobelt-based structures of zinc oxide
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Table 3. Piezoelectric tensor (D) components (di j ), infrared and Raman active and twisting (TW) modes
of ZnO nanowires and nanorings. The nanostructure is specified in the first column. [R] and {R} denote
the symmetric and antisymmetric part of the Raman tensor. ‖ and ⊥ denote parallel and perpendicular
polarization (relative to the nanowire/nanotube axis) of the (both incoming and outgoing) electric field vector,
while × denotes crossed polarization (parallel polarization of the incoming and perpendicular polarization
of the outgoing light beam or vice versa); ‖⊥ (×⊥) denotes mutually parallel (crossed) polarizations of
the incoming and outgoing beam but orthogonally oriented relative to the nanowire/nanotube axis. For the
nanorings we assume the order of the main axes to be greater than three.

Type Infrared [R] {R} TW D

3H wire/tube A0 + E1 2A0 + 2E1 B0 + E1 0 B0 d14 = 0
‖ +⊥ ‖⊥, ‖ +⊥,× ×⊥ + ×

6H wire/tube A0 + E1 2A0 + E1 + E2 B0 + E1 0 B0 d11 = d14 = 0
‖ +⊥ ‖⊥, ‖ + × +⊥ ×⊥ + ×

zCa1 c rings A0 + A1 + A−1 2A0 + A1 + A−1 + A2 + A−2 A0 + A1 + A−1 0 A0 d11 = 0
(general a1, c) ‖ +⊥ + ⊥ ‖⊥, ‖ + × + × +⊥ + ⊥ ×⊥ + × + ×
a1 = (1, 1), (2, 1) A0 + E1 2A0 + E1 + E2 B0 + E1 0 B0 d11 = d14 = 0
c = (n, 0) ‖ +⊥ ‖⊥, ‖ + × +⊥ ×⊥ + ×
a1 = (1, 1), (2, 1) A−

0 + A+
1 + A+

−1 2A+
0 + A−

1 + A−
−1 + A+

2 + A+
−2 A+

0 + A−
1 + A−

−1 0 A+
0 D = 0

c = (0, n) ‖ +⊥ + ⊥ ‖, ‖⊥ + × + × +⊥ + ⊥ ×⊥ + × + ×
xCa1 c rings A0 + A1 + A−1 2A0 + A1 + A−1 + A2 + A−2 A0 + A1 + A−1 0 A0 d11 = 0
(general a1, c) ‖ +⊥ + ⊥ ‖⊥, ‖ + × + × +⊥ + ⊥ ×⊥ + × + ×
a1 = (1, 0) A0 + E1 2A0 + E1 + E2 B0 + E1 0 B0 d11 = d14 = 0
c = (n, 0) ‖ +⊥ ‖⊥, ‖ + × +⊥ ×⊥ + ×
a1 = (1, 0) A−

0 + A+
1 + A+

−1 2A+
0 + A−

1 + A−
−1 + A+

2 + A+
−2 A+

0 + A−
1 + A−

−1 0 A+
0 D = 0

c = (0, n) ‖ +⊥ + ⊥ ‖, ‖⊥ + × + × +⊥ + ⊥ ×⊥ + × + ×
Nanospring A0 + A1 + A−1 2A0 + A1 + A−1 + A2 + A−2 A0 + A1 + A−1 0 A0 d11 = 0

‖ +⊥ + ⊥ ‖⊥, ‖ + × + × +⊥ + ⊥ ×⊥ + × + ×
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(which grow along the b1-axis) are characterized by an enhanced piezoelectric effect. Namely,
Kong and Wang have recently reported [20] that, by introducing dopants such as In and/or
Li, the growth of free-standing nanobelts dominated by the ±(0001) polar surfaces is feasible.
The nanobelts grow along [21̄1̄0] with the side surfaces ±(011̄0) and due to the small thickness
(5–20 nm) and large aspect ratio (∼1/4) they are exceptionally flexible and tough. Therefore,
the belts tend to form helical structures in order to minimize the total energy (by reducing
the electrostatic but enlarging the elastic potential). As a result a right-handed nanospring of
a uniform shape (width ∼20 nm, thickness ∼10 nm, radius ∼500–800 nm, pitch distance of
200–500 nm) is formed.

As apart from the ±(0001) polar facets, the ±(12̄12) surfaces also expose the net charge,
the growth of nanosprings dominated by the latter surfaces is, in principle, possible. It should
be also noted that springs are not necessarily periodic quasi-one-dimensional systems; periodic
structures are characterized by the rational Q = q/r values.

Nevertheless, symmetry of nanosprings is generated by the screw-axis transformation
(CQ | f ) (rotation of 2π/Q around the axial direction of the spring followed by a translation
by f along the same axis) and can be described by first line group family [19]:

LS = T 1
Q( f ). (3)

Equation (3) also describes the symmetry of the rigid helical structure of zinc oxide
consisting of a superlattice-structured nanobelt [7] consisting of two types of alternating (polar–
nonpolar) stripes whose c-axes are perpendicular to each other.

A nanospring consists of the orbits of the general (a1) type, only. The number of orbits is
determined by the number of atoms within the cross section of the nanobelt, a building block
of the nanospring, as all the atoms of a nanospring sit in the general-position points of the
symmetry group (3) and are characterized by the trivial stabilizer. This is very much in contrast
to the situation in the bulk where all the atoms occupy special positions, being invariant under
the C3v point group.

2.3. Seamless nanorings

The formation of free-standing single-crystal nanorings of zinc oxide by spontaneous coaxial,
uniradial and epitaxial self-coiling of a polar nanobelt has been reported quite recently [21].
The polarization across the nanobelt comes from the ionic charges on the zinc- and oxygen-
terminated surfaces and the circular folding is thus driven by electrostatic interactions. The
final single-crystalline structure is explained by chemical bonding between the loops.

The as-synthesized nanorings were analysed by scanning electron microscopy and high-
resolution transmission electron microscopy. Typically, the nanorings dimensions are: diameter
1–4 µm, thickness 10–30 nm and shell-width 0.2–1 µm.

Two types of nanoring structure were found. The type I structure has the radial direction
[12̄10], tangential direction [101̄0] and the nanoring axis [0001], i.e. the nanoring is made of the
coiling loops of the polar nanobelt with side and top/bottom surfaces ±(12̄10) and ±(0001),
respectively, and the growth direction [101̄0], by interfacing the (0001) zinc and (0001̄) oxygen
planes at the same crystallographic orientation.

The structure of the type II nanoring has the radial direction [12̄13̄], the tangential direction
[101̄0] and the nanoring plane (12̄12), i.e. its building block grows along the [101̄0] direction
while its side and top/bottom surfaces are ±[12̄13̄] and ±(12̄12), respectively.

Although the shell-width/diameter ratio of a typical ZnO nanoring is far below the
length/diameter ratio of a carbon nanotube (and many inorganic tubes as well), we shall regard
nanorings (at least from the symmetry point of view) as being infinitely long, i.e. as quasi-one-
dimensional crystals. The justification for such an approach can be found in the well-known
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fact that a system which consists of just a few unit cells can be considered as a crystal since
such an approximation would lead to an error not greater than a few per cent while it would
allow one to take the benefit of introducing standard solid state concepts.

Hence, the standard notion of a chiral vector can be introduced: c = n1a1 + n2a2,
where a1 and a2 are the unit vectors of the polar nanobelt and (n1, n2) are the chiral indices.
After the belt is self-coiled, the chiral vector reposes along the circumference of the ring.
The minimal thickness of the ring tmin can be easily calculated by the following formula:
tmin = [b1, b2, b3]/|a1 × a2|. In general, an L-walled nanoring is L tmin thick. In such a
case we assume that the central wall is just folded from the layer while the inner/outer ones are
proportionally shrunk/stretched. Typically, L is not a small number: a 10 nm thick nanoring
actually consists of 35 layers.

In order to cut out a polar nanobelt from the bulk it should be sawn along the Zn2+- and
O2−-terminated surfaces. In the wurtzite structure there are two classes of such surfaces and
thus two family types of the polarization-induced nanorings can be imagined. However, the
nanorings, grown so far, correspond to family members with maximal symmetry.

Surfaces of the first class are perpendicular to the z-axis of the bulk. Therefore, the layers
to be circularly folded are parallel to the z-axis (figure 4) and they can be uniquely enumerated
by the lattice vectors a1 = l1b1 + l2b2 = (l1, l2) and denoted as zC(l1, l2). (Note that a1 is the
minimal lattice vector in the chosen direction if l1 and l2 are non-negative co-primes, figure 4.)
The lattice of the layer is rectangular with unit vectors a1 and b3 and the single-layer thickness

is
√

3b/2
√

l2
1 + l2

2 − l1l2 (area of the xy-plane unit cell
√

3b2
1/2 over the a1-vector length

b
√

l2
1 + l2

2 − l1l2). In particular, the layers (1, 1) and (2, 1) have evenly distributed (a1/2-
spaced) mirror and glide planes, respectively. When rolled up they yield maximally symmetric
rings, the very structure types that were reported to be synthesized [21]. An L-walled nanoring
with chiral vector c = n1(l1b1 + l2b2) + n2b3 we denote as zC(l1,l2)(n1, n2)L.

The second class has charged surfaces that are parallel to the (12̄12) lattice plane (figure 5),
and the belt should be sawn along the x-axis (lattice vector a2 = 2b1 + b2), which is not
perpendicular to the (12̄12) plane. In order to define the slope we use the rectangular lattice of
the cross section (periods b2 and b3) and introduce the lattice vector a1 = l1b2 + l2b3 which
defines the sawing direction (minimal vector along the direction is obtained if l1 and l2 are
co-primes). Therefore, the periods of the lattice to be folded, xC(l1,l2), are a1 and a2, and the
rings are parameterized by the chiral vector c = n1a1 + n2a2, figure 6. Note that although the
procedures of sawing zC and xC layers are different, the layers xC(0,1) and zC(2,1) are identical.

The single-loop thickness is bb3/2
√

l2
1b2 + l2

2b2
3. Here also there are special choices of a1

which yield enlarged symmetry of the coiled structures: in addition to the above commented
xC(0,1), the structure xC(1,0) is the single choice that matches the same conditions. Again, as
the layers are invariant under the mirror reflections, the resulting rings folded along the chiral
vectors (n, 0) and (0, n) will have vertical and horizontal mirror symmetry.

Conceptually, the method of deriving the line group symmetry of the nanorings is the same
as the method used in the case of carbon nanotubes [9]. However, the details of deduction are
quite different as the lattice of the polar nanobelt is rectangular in contrast to the hexagonal
structure of the graphite.

The symmetry of the (n1, n2) nanoring can be described by the first line group family [19]:

LzC = T r
q (a)Cn, (4a)

as it is generated by roto-helical transformations originating from the coiled lattice translations
and does not depend on L (number of walls). The rotational axis order, n, is the greatest
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Figure 4. Upper panels: top view of zC belts, with the a1 vector being (from the left to the right):
(1, 1), (2, 1) and (3, 2). Grey and black dots denote sites at z = 0 and z = b3/2. The walls (of
a coiled ring) are enumerated, and the first one is shaded. Mirror and glide planes are indicated.
Central panel left: side view of the zC(2,1) belt. Grey and black dots denote ions of zinc and
oxygen. The belt is divided, by the bold lines, into 3a2 wide ribbons. Within one of such ribbons the
glide planes are depicted. The remaining pictures are (clockwise): zC(1,1)(0, 10)2, zC(2,1)(0, 10)2,
zC(2,1)(10, 0)2 and zC(1,1)(10, 0)2 nanorings.

Figure 5. Structure model of the ZnO polar surface (12̄12).

common divisor (GCD) of the nanoring parameters, n1 and n2. The unit cell length a and
screw-axis parameters, r , q , can be determined in the following way. First, co-primes α1 and
α2 which satisfy the relation a2

1/a
2
2 = α1/α2 (a1, a2 are the lattice vectors of the polar nanobelt
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Figure 6. Upper panel, left: top view of the xC belt sawn along the a2 direction. The minimal belt
of such a type is shaded. Grey and black dots depict the sites of oxygen and zinc ions within the
neighbouring planes parallel to the (12̄12) polar surface. Upper panel, right: plane perpendicular to
a2 vector; a1 = 4b2+b3. Intersection lines with the family of crystal planes parallel with (12̄12) are
indicated. Central panels: side view of the xC(4,1) belt (left) and xC(1,0)(14, 0)2 nanoring (right).
Bottom panels: xC(1,0)(14, 0)2 and xC(1,0)(0, 10)2 nanorings.

and can be measured experimentally) should be defined. Then,

q = nq̃, q̃ = 1

n2α
(α1n2

1 + α2n2
2), (4b)

a = a2

√
α1

α
q̃, (4c)

r0 = n2α2

nβ1α
x +

(
n1α1

nα
X − x

)

y
q̃

β1
, (4d)

where α = GCD( n1
n , α2)GCD(α1,

n2
n ), βi = GCD( ni

n , q̃); x and y are the minimal integers

which satisfy x n1/n
β1

= 1 + X q̃
β1

and n2
n y = 1 + Yβ1, for some integers X and Y . Parameters r0

and q̃ are co-primes. Note that instead of r0, ri = r0 + i q̃ (i = 1, 2, . . .) would yield the same
line group. For convenience, by r is denoted the minimal value which is co-prime with q .
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Assuming that the central wall is just folded from the layer while the inner/outer ones are
proportionally shrunk/stretched, the outer diameter D of the ring is

D = na2

π

√
αq̃

α2
+ 1

2
Ltmin.

The chiral angle of the nanoring is given by the formula:

θ = arcsin

(
n1

n

√
α1

αq̃

)

.

Thus, a chiral nanoring (n1, n2), 0 < θ < π/2, is characterized by nontrivial helical symmetry,
and quite large a and q values, (4c). In other words, most of the translational symmetry of the
belt is transformed to the high-order screw-axis symmetry of the ring.

On the other hand, the symmetry of the zig-zag (n, 0) and armchair (0, n) nanorings,
having, respectively, zero and right angle chirality, is parameterized by q = n and r = 1.
The helical symmetry here thus degenerates into the pure translational symmetry: T (a2) and
T (a1), respectively. Kong et al [21] recently reported the nanoring structure of type I to be
almost zig-zag, i.e. with a small helical angle of 0.3◦.

As mentioned earlier, self-coiling of the zC(1,1) and zC(2,1) polar belts along the achiral
directions yields rings with enlarged symmetry. To be more specific, the zC(1,1) nanobelt,
when folded along the zig-zag/armchair direction, forms a nanoring which is invariant under
vertical/horizontal mirror reflection. Its symmetry group thus belongs to the sixth and third line
group family [19]:

L
(1,1)

zCZ = T (a)Cnv, (5a)

L
(1,1)
zCA = T (a)Cnh. (5b)

Analogously, the glide plane symmetry of the zC(2,1) belt is retained in the zig-zag
ring structure while, in the armchair case, it becomes a roto-reflectional symmetry. The
corresponding groups belong to the seventh and second line group family [19]:

L
(2,1)

zCZ = Tc(a)Cn, (6a)

L
(2,1)
zCA = T (a)S2n; (6b)

where Tc(a) is a cyclic group, generated by the glide plane transformation (σv|a/2).
Finally, symmetry groups of the zig-zag and armchair rings obtained by coiling the belt of

the type xC(1,0) belong to the eighth and fourth line group family [19]:

L
(1,0)

xCZ = T 1
2n(a)Cnv, (7a)

L
(1,0)
xCA = T 1

2n(a)Cnh, (7b)

exactly matching the symmetries of the zig-zag and armchair single-wall transition metal
dichalcogenide nanotubes [22].

The orbit decompositions of the above-listed nanoring structures are given in table 2. Also,
it should be noted that the isogonal point groups of the armchair nanorings zC(2,1)(0, n), for n
odd, and xC(1,0)(0, n), for any n, contain spatial inversion, and consequently cannot exhibit
piezoelectricity.

3. Symmetry-based properties

Symmetry is essential for understanding underlying physical properties. It also enables
applications of the powerful group theoretical techniques. In this section we use the presented
symmetry classification of the zinc oxide nanostructures to derive some of their physical
properties determined by symmetry.
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3.1. Quantum numbers and band degeneracies

The quantum mechanical description of the physical processes in ZnO nanostructures is based
on the conservation laws imposed by symmetry which can be expressed in terms of the good
quantum numbers. Band assignation by all quantum numbers is essential for the applications
of the selection rules [23] in calculations of the physical properties of the nanostructures.

The translational symmetry (with period a) is introduced by conserved quasi-momentum
k taking values from the one-dimensional Brillouin zone (−π/a, π/a]. In the case of the
armchair nanorings it can be reduced to the irreducible domain [0, π/a] due to the horizontal
mirror symmetry. Isogonal rotations are reflected in the z-component of the quasi-angular
momentum quantum number m which, for nanowires and nanotubes of the 3H (6H) type, takes
the values 0 and 1 (integers from the interval [0, 3]) as the vertical mirror symmetry makes
m and −m equivalent. However, as the symmetry transformations of the 6H structure form
a non-symmorphic line group (2), the isogonal rotations are not necessarily the symmetries.
Consequently, m is not a conserved quantity. Nevertheless it can be used at a cost of the more
complicated selection rules. Alternatively, helical quantum numbers, helical momenta k̃ and
complementary angular momenta m̃ can be used.

Concerning the nanosprings, usage of the (k̃, m̃) quantum numbers, k̃ ∈ (−π/ f,−π/ f ],
m̃ ∈ (−q/2, q/2], is indispensable as these structures are incommensurate, generally. For
rational Q = q/r (i.e. in the case of a commensurate structure) the period is a = q f/n and
quasi-momentum k ∈ (−π/a, π/a) is conserved. As the symmetry group is Abelian, the bands
are non-degenerate unless time-reversal symmetry is present.

Nanorings, nanotubes and nanowires have additional, mirror reflection symmetries, which
yield parity quantum numbers and double band degeneracy (fourfold if the time-reversal is
included). Also, nanorings of type II have a non-symmorphic symmetry (7a) or (7b).

3.2. Phonons, Raman and infrared active modes

While the Raman effect and infrared activity in the wurtzite-type crystals had been measured
and analysed in the late 1960s [25], the pioneering works on Raman spectroscopy of hexagonal
ZnO nanowires, following the discovery of the novel zinc oxide nanostructures [1], have been
reported only quite recently [3, 5].

Here we give the symmetry analysis of the phonon modes of all the quasi-one-dimensional
nanostructures of ZnO. Special attention is given to the Raman and infrared active modes.

Apart from the symmetry group, the classification of the normal modes of vibration
depends on the orbits out of which the physical system is formed. The general classification for
all orbit types of the line groups is presented in [19]. As the orbit decomposition of the ZnO
nanostructures is given in the previous section, each particular classification of the phonons can
be easily found.

The dynamical representations of the 3H and 6H types of the ZnO nanotubes and
nanowires are:

Ddyn
3H = 2

∑

k

[
(3Na + 2Nb + Nd)k A0 + (3Na + Nb)k B0 + (6Na + 3Nb + Nd )k E1

]; (8)

Ddyn
6H = 2

∑

k

[
(3Na + 2Nb)(k A0 + k A3) + (3Na + Nb)(k B0 + k B3)

+ 3(2Na + Nb)(k E1 + k E2)
]
, (9)

where Na , Nb and Nd denote respectively the number of orbits of a1, b1 and d1 type;
k Am and k Bm are one-dimensional (1D) irreducible representations (IRs) with even and odd,
respectively, vertical mirror parity; k Em are 2D IRs with no parity.
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Phonons in the nanosprings and chiral nanorings are characterized by 1D IRs k̃ Am̃ and
k Am . (For instance, under the screw-axis transformation (Cq | f ) of a nanospring, they are
multiplied by exp(ik̃ f + im̃2π/q).)

Dynamical representations of the nanorings with enhanced symmetry are listed below (+
and − denote, respectively, even and odd horizontal mirror parity):

Ddyn

zC(1,1)(n,0)
= 2L

∑

k

[

4k A0 + 2k B0 + 6
[n/2]∑

m=1

k Em + 3k An/2 + 3k Bn/2

]

; (10)

Ddyn
zC(1,1)(0,n)

= 2L
[n/2]∑

m=−[ n−1
2 ]

[

40 A+
m + 20 A−

m + 3π A+
m + 3π A−

m + 6
∑

k
k Em

]

; (11)

Ddyn
zC(2,1)(n,0)

= 6L
∑

k



k A0 + k B0 + k An/2 + k Bn/2 + 2
[ n−1

2 ]∑

m=1

Em



 ; (12)

Ddyn
zC(2,1)(0,n)

= 6L
[n/2]∑

m=−[ n−1
2 ]

[

0 A−
m + 0 A+

m + π A−
m + π A+

m + 2
∑

k
k Em

]

; (13)

Ddyn
xC(1,0)(n,0)

= 2L
∑

k

[

2k A0 +k B0 + 2k An + k Bn + 3
n−1∑

m=1
k Em

]

; (14)

Ddyn

xC(1,0)(0,n)
= 2L

[
n∑

m=1−n

(

0 A−
m + 20 A+

m + 3
∑

k
k Em

)

+ 3
n∑

m=1
π Em

]

. (15)

Raman active symmetric modes pertain to the all above-listed dynamical representations.
They are also infrared active in all the cases except for the armchair nanorings where the
infrared active modes are 0 A−

0 , 0 A+
1 and 0 A+

−1 (A2u, B2u and B1g in the crystallographic
notation). Nanowires, nanotubes and zig-zag nanorings, on the other hand, are also
characterized by Raman active modes with 0 B0 symmetry (this changes sign under the
vertical mirror reflection) and doubly degenerated infrared active phonons with 0 E1 symmetry.
Armchair nanorings are, however, in contrast to all the other ZnO nanostructures, characterized
by 0 A−

1 , 0 A−
−1, 0 A+

2 and 0 A+
−2 Raman active modes.

A complete symmetry analysis of the Raman and infrared activity, including polarization
and antisymmetric Raman tensor components, is given in table 3. Namely, in contrast to
the bulk wurtzite structure [25], the antisymmetric part of the Raman tensor may be relevant
for ZnO nanostructures with non-trivial helical axis [26]. It should be also noted that, due
to the symmetry, the polarizability tensor of the ZnO nanostructures is diagonal with two
independent components [24] (likewise the case of carbon and transition metal dichalcogenide
nanotubes [9, 22]).

Our results are in accordance with the previously reported measurements of Raman
scattering on aligned ZnO NWs (zinc oxide nanowires) on Si substrate [3, 5]. Namely,
differences in the Raman spectra obtained by Zhang et al and Hsu et al can be explained by
symmetry arguments. As listed in table 3, the A1 TO (transversal optical) mode is active if the
incident light beam is polarized perpendicularly to the NW axis, while the A1 LO (longitudinal
optical) mode can be seen if the light is polarized along the NW axis. (Note that the A1 mode
is, within the line group notation, denoted as 0 A0.) The appearance of the doubly degenerate
mode in both the spectra is also consistent with our symmetry analysis, as this mode is active in
crossed polarization, irrespective of the orientation of the incident beam (i.e. the incident beam
being polarized parallel and the outgoing one orthogonal to the NW axis or vice versa).
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3.3. Piezoelectricity

It is well known that the wurtzite crystal structure of ZnO shows piezoelectricity, i.e. that under
a mechanical strain it develops a spontaneous dipole moment. This property can be described
by the piezoelectric tensor, which is of the third order and symmetric with respect to the last two
indices, as it relates the dipole moment (vector representation) to the strain (polar symmetric
second rank tensor). As the order of the principal axis of isogonal rotation in the nanostructures
(and in the bulk as well) is at least three, the general form of the piezoelectric tensor D is:

D1 =
( d11 0 d15

0 −d11 d14

d15 d14 0

)

, D2 =
( 0 −d11 −d14

−d11 0 d15

−d14 d15 0

)

,

D3 =
( d31 0 0

0 d31 0
0 0 d32

)

,

where the Di matrices actually contain Di jk components (e.g., d11 in D1 is in fact D111 and so
on).

In some of the structures certain di j elements vanish due to the symmetry. For instance,
in the case of a nanowire (or nanotube) of the 6H type the elements d11 and d14 vanish. The
same holds for the bulk as it is characterized by the same point group. On the other hand, as
mentioned in the previous section, some of the armchair nanorings exhibit no piezoelectricity
whatsoever (D = 0). We give a detailed symmetry analysis of the piezoelectric tensor elements
for various ZnO nanostructures in table 3.

4. Summary

All the geometrical symmetries of ZnO nanowires, nanotubes, nanosprings and nanorings
are found and some of the symmetry based properties are derived. As these structures are
quasi-one-dimensional crystals, their symmetries are described by the line groups: each of
these structures has different symmetry, which on the nanoscale strongly affects their physical
properties. Orbit types, conserved quantum numbers and possible band degeneracies are
determined. Modes of lattice vibration are fully symmetry-assigned, Raman and infrared active
modes, in particular. General forms of the piezoelectric tensor are discussed.

The most helpful technical benefit of the results presented lies in the possibility of
performing extremely efficient calculations (e.g. electronic band and optical response function
calculations) which are based on the modified Wigner projector method [27]. Namely, if instead
of the standard elementary cell, the symmetry cell (which consists of the orbit representatives
only) is used and just the relevant (irreducible) (sub)space is considered, a great efficiency can
be achieved. The time-saving rate grows with the number of atoms within the unit cell and is
thus directly related to the helicity order of the system considered.
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Fundamentals of Theory, Optics and Transport Devices ed S V Rotkin and S Subramoney (Berlin: Springer)
chapter 2, pp 41–88

http://dx.doi.org/10.1063/1.1630849
http://dx.doi.org/10.1063/1.1564870
http://dx.doi.org/10.1063/1.1588735
http://dx.doi.org/10.1063/1.1605803
http://dx.doi.org/10.1063/1.1605808
http://dx.doi.org/10.1088/0957-4484/16/2/021
http://dx.doi.org/10.1063/1.1342050
http://dx.doi.org/10.1063/1.1544437
http://dx.doi.org/10.1063/1.1615703
http://dx.doi.org/10.1063/1.1627472
http://dx.doi.org/10.1126/science.1116495
http://dx.doi.org/10.1103/PhysRevB.47.5485
http://dx.doi.org/10.1103/PhysRevB.60.2728
http://dx.doi.org/10.1107/S0108767300018857
http://dx.doi.org/10.1016/S0032-3861(96)01042-7
http://dx.doi.org/10.1016/S0022-0248(02)01918-8
http://dx.doi.org/10.1088/1367-2630/5/1/115
http://dx.doi.org/10.1088/0022-3727/37/3/018
http://dx.doi.org/10.1016/j.jcrysgro.2005.03.045
http://dx.doi.org/10.1016/j.ssc.2005.02.015
http://dx.doi.org/10.1016/j.matchemphys.2003.09.004
http://dx.doi.org/10.1103/PhysRevB.47.7805
http://dx.doi.org/10.1021/nl034463p
http://dx.doi.org/10.1126/science.1092356
http://dx.doi.org/10.1007/s100510070112
http://dx.doi.org/10.1088/0305-4470/16/17/010
http://dx.doi.org/10.1088/0305-4470/17/4/016
http://dx.doi.org/10.1088/0305-4470/17/13/012
http://dx.doi.org/10.1088/0305-4470/18/6/015
http://dx.doi.org/10.1016/0375-9601(95)00412-V
http://dx.doi.org/10.1103/PhysRev.181.1351

	1. Introduction
	2. Symmetry
	2.1. Nanowires and nanotubes
	2.2. Nanosprings and superlattice structured nanohelices
	2.3. Seamless nanorings

	3. Symmetry-based properties
	3.1. Quantum numbers and band degeneracies
	3.2. Phonons, Raman and infrared active modes
	3.3. Piezoelectricity

	4. Summary
	Acknowledgments
	References

